Measurement Structures with Archimedean Ordered Translation Groups
نویسندگان
چکیده
The paper focuses on three problems of generalizing properties of concatenation structures (ordered structures with a monotonic operation) to ordered structures lacking any operation. (1) What is the natural generalization of the idea of Archimedeaness, of commensurability between large and small? (2) What is the natural generalization of the concept of a unit concatenation structure in which the translations (automorphisms with no fixed point) can be represented by multiplication by a constant? (3) What is the natural generalization of a ratio scale concatenation structure being distributive in a conjoint one, which has been shown to force a multiplicative representation of the latter and the product-of-powers representation of units found in physics? It is established (Theorems 5.1 and 5.2) that for homogeneous structures, the latter two questions are equivalent to it having the property that the set of all translations forms a homogeneous Archimedean ordered group. A sufficient condition for Archimedeaness of the translations is that they form a group, which is equivalent to their being l-point unique, and the structure be Dedekind complete and order dense (Theorems 2.1 and 2.2). It is suggested that Archimedean order of the translations is, indeed, also the answer to the first question. As a lead into that conclusion, a number of results are reported in Section 3 on Archimedeaness in concatenation structures, including for positive structures sufficient conditions for several different notions of Archimedeaness to be equivalent. The results about idempotent structures are fragmentary. AMS subject classifications (1985). 08A02,08A35.
منابع مشابه
A classification of hull operators in archimedean lattice-ordered groups with unit
The category, or class of algebras, in the title is denoted by $bf W$. A hull operator (ho) in $bf W$ is a reflection in the category consisting of $bf W$ objects with only essential embeddings as morphisms. The proper class of all of these is $bf hoW$. The bounded monocoreflection in $bf W$ is denoted $B$. We classify the ho's by their interaction with $B$ as follows. A ``word'' is a function ...
متن کاملExistentially Complete Abelian Lattice-ordered Groups
The theory of abelian totally ordered groups has a model completion. We show that the theory of abelian lattice-ordered groups has no model companion. Indeed, the Archimedean property can be captured by a first order V3V sentence for existentially complete abelian lattice-ordered groups, and distinguishes between finitely generic abelian lattice-ordered groups and infinitely generic ones. We th...
متن کاملFixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces
In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.
متن کاملReverse Mathematics, Archimedean Classes, and Hahn’s Theorem
Archimedean classes and convex subgroups play important roles in the study of ordered groups. In this paper, we show that ACA0 is equivalent to the existence of a set of representatives for the Archimedean classes of an ordered abelian group. Hahn’s Theorem is the strongest known tool for classifying orders on abelian groups. It states that every ordered abelian group can be embedded into produ...
متن کاملArchimedean - like Classes of Lattice - Ordered Groups
Suppose <? denotes a class of totally ordered groups closed under taking subgroups and quotients by o-homomorphisms. We study the following classes: (1) Res (£?), the class of all lattice-ordered groups which are subdirect products of groups in C; (2) Hyp(C), the class of lattice-ordered groups in Res(C) having all their ¿-homomorphic images in Res(<?); Para(C), the class of lattice-ordered gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1987